This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Radiation-Induced Copolymerization of Styrene and Cellulose at Low Dose Rates

J. L. Garnett^a; E. C. Martin^a ^a School of Chemistry The University of New South Wales, Kensington, Australia

To cite this Article Garnett, J. L. and Martin, E. C.(1970) 'Radiation-Induced Copolymerization of Styrene and Cellulose at Low Dose Rates', Journal of Macromolecular Science, Part A, 4: 5, 1193 — 1214 To link to this Article: DOI: 10.1080/00222337008061013 URL: http://dx.doi.org/10.1080/00222337008061013

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Radiation-Induced Copolymerization of Styrene and Cellulose at Low Dose Rates

J. L. GARNETT and E. C. MARTIN

School of Chemistry The University of New South Wales Kensington, Australia

SUMMARY

A study has been made of the radiation-induced grafting of styrene to cellulose in the presence of cobalt-60 gamma irradiation at low total doses and dose rates. For copolymerization, Whatmans 41 filter paper was immersed in solutions of styrene in methanol at various monomer concentrations. The dose rates were varied from 140 to 3100 rads/hr while the total dose varied from 10^3 to 2×10^5 rads.

In the presence of oxygen the grafting results showed considerable scatter, but a statistical analysis revealed that at all concentrations a linear relationship existed between total dose and graft %. Three factors contributing to the variance about the regression line were examined. Residual oxygen in the solution, while not important at high dose rates, was shown markedly to contribute to the variance in the range examined. A linear dose-rate effect involving a decrease in graft with increasing dose rate was demonstrated. A LET effect also contributed to the over-all variance. Preliminary results indicate the presence of a maximum which may be a Trommsdorff effect.

INTRODUCTION

A number of reports have been published showing that styrene in solution may be heterogeneously grafted to cellulose under the influence

1193

Copyright ©1970, Marcel Dekker, Inc.

of ionizing radiation [1-10]. In particular, Dilli and Garnett [11] have thoroughly investigated this copolymerization reaction at dose rates of 70 krads/hr and higher for total doses above 10 krads. Interesting phenomena, including a Trommsdorff effect, were observed at the lower dose rates by irradiation of a solution of the monomer in which the cellulose had been immersed. The purpose of this present paper is to report a study of the same grafting process at very low dose rates and at total doses varying from 1.2 to 164 krads.

EXPERIMENTAL

The grafting was effected by irradiating strips of paper in solutions of styrene in methanol. The styrene prepared from a commercial source by distillation under reduced pressure was mixed with freshly distilled methanol to obtain solutions of 10, 20, 30, 40, and 60% of monomer by volume. The methanol was purified by the magnesium-iodine technique. The paper was Whatmans No. 41 double acid washed sheets for chromatography cut into strips 70 \times 30 mm, the same batch of paper being used for all runs. Each strip was weighed, then folded in alternate directions to give a crimped strip 30 mm long. Three strips were placed in each test tube, one above the other, each layer being positioned at 90° to the horizontal axis of the previous one. A constriction was drawn in the upper part of the test tube and, after cooling, the paper in the tube was covered completely with 15-16 ml of the monomer solution (see Fig. 1). Thus some space (2-3 cc) containing air was left above the solution and consequently the initial stages of the irradiation were done in the presence of some oxygen.

The irradiations were carried out using an 800 Curie 60 Co source in the University of New South Wales. Fricke dosimetry was used to calibrate the source and the different dose rates were achieved by setting the test tubes at distances varying from 60 to 200 cm from it. This gave a range of eleven dose rates whose approximate values were 150, 300, 450, 600, 750, 1100, 1500, 1900, 2200, 2700, and 3100 rads/hr.

For the linear energy transfer (LET) effect studies a set of irradiations was made at three dose rates, i.e., 2000, 1143, and 667 rads/hr, in aluminum canisters. This was paralleled by a set of irradiations run in test tubes at the same dose rates. The aluminum canisters were 75 mm in diameter internally and of 5 mm wall thickness. Paper strips, 50×50 mm, were arranged on a rack at 10 mm intervals so that, apart from the rack areas, they were at least 10 mm from all but the solutions (see Fig. 2). For both canisters and tubes containing the paper but no solution, oxygen was

Fig. 1. Folded paper strip and sealed test tube with solvent and three paper strips.

Fig. 2. Lid, rack with paper strips and spreaders in place, and aluminum canister.

removed by alternatively evacuating and filling with moist nitrogen; this was repeated several times. The solutions were then made up from freshly prepared reagents. The methanol was purged with dry nitrogen for 10 min

	Dose, Dose Rat	te and Monomer Con	centration in the Pre	sence of Oxyger	1
Dose		Graft	Dose		Graft
(rads)	Dose rate	(m/m %)	(rads)	Dose rate	(m/m %)
X 10 ⁻³	(rads/hr)	X 10	X 10 ⁻³	(rads/hr)	X 10
		Part (a) 100	% Monomer		
2	148	11	35	735	18
ŝ	140	24	35	1470	28
S	135	25	35	2220	18
5	304	6	38	1050	56
7	143	6	42	1730	36
7	290	23	42	2680	13
7	455	10	48	3060	20
10	280	22	51	1410	87
10	430	24	51	2090	40
10	608	6	54	1120	93
12	750	22	61	1700	89
14	300	14	62	2550	46
14	580	26	64	148	315
15	415	23	71	2930	63

Table 1. Grafting of Styrene to Cellulose in Methanol under Differing Conditions of Radiation

(continued)					
78	1700	41	2	455	2
256	1050	38	25	285	7
297	1520	36	15	148	٢
453	750	36	14	298	9
104	2220	35	7	304	5
73	1870	29	19	135	5
300	595	29	8	148	4
45	1140	27	0	148	2
		rt (b) 20% Monomer	Pai		
203	3000	144	15	1870	29
452	304	131	30	595	29
139	2610	125	27	1090	26
127	2800	101	34	700	25
187	2110	101	12	1520	24
117	2460	89	14	442	21
164	1750	28	27	560	20
119	1500	72	10	1140	18
87	2010	72	27	720	17

1197

2011
January
25
11:03
At:
Downloaded

ted)	
ntinu	
1 (co	
able	ļ
Ë	

		Table 1 (c	ontinued)		
Dose		Graft	Dose		Graft
(rads)	Dose rate	(% m/m)	(rads)	Dose rate	(%
× 10 ⁻³	(rads/hr)	X 10	X 10 ⁻³	(rads/hr)	× 10
10	280	14	42	2680	125
10	608	7	45	1870	144
11	455	75	48	3060	118
12	750	11	49	2040	368
14	570	47	51	1410	348
14	575	62	55	1140	152
15	304	15	61	1700	282
15	415	35	64	2680	344
18	750	141	68	2840	393
18	1140	37	72	2010	322
20	560	45	73	3060	402
22	455	236	89	2460	416
24	1520	43	96	1870	550
25	700	62	101	2800	409
26	1070	78	107	2220	601
26	1070	196	147	3060	616

itinued	
1 (con	
Table	

Downloaded At: 11:03 25 January 2011

					ļ
Dose		Graft	Dose		Graft
(rads) X 10 ⁻³	Dose rate (rads/hr)	(rads/hr) × 10	(rads) X 10 ⁻³	Dose rate (rads/hr)	(% w/w) X 10
12	753	106	44	1834	389
13	531	78	45	3060	354
14	288	684	51	1410	610
14	580	234	51	2090	832
15	415	130	19	1700	848
15	624	60	62	2550	923
15	2050	24	71	2930	959
17	720	331	72	2010	921
18	742	112	101	2800	829
18	1140	143	120	2505	1332
18	2510	53			
		Part (d) 40	1% Monomer		
1	138	0	24	1520	256
2	148	10	25	700	496
2	288	4	26	700	100

(continued)					
671	2505	60	206	415	15
537	2500	60	78	1720	12
595	2510	59	149	753	12
758	1410	51	105	455	11
646	2050	48	49	1440	10
368	3060	48	121	608	10
310	2680	42	253	280	10
553	2500	41	186	575	6
483	1707	41	34	1070	8
660	1050	38	108	455	7
107	1520	36	66	304	٢
647	750	36	92	148	٢
505	1440	35			
337	2220	35	23	705	S
424	1430	34	57	304	S
423	1430	34	122	135	5
284	1870	29	7	575	4
501	610	29	7	148	4
388	1080	26	ŝ	413	ŝ
364	1070	26	248	305	7

1201

continued)
_
Table

Downloaded At: 11:03 25 January 2011

Dose		Grafit	Dose		Graft
(rads) X 10 ⁻³	Dose rate (rads/hr)	(% w/w) × 10	(rads) X 10 ⁻³	Dose rate (rads/hr)	(% %/w) X 10
15	608	199	61	1700	849
15	2050	81	68	2840	675
16	148	644	70	2900	720
17	700	269	72	2010	951
18	750	210	73	1520	1133
18	1140	234	73	3060	477
18	2510	135	89	2460	1043
20	560	438	101	2800	1099
21	2900	144	147	3060	2021
			164	1520	2410
		Part (e) 60%]	Monomer		
l	148	10	21	1140	363
2	148	15	21	3060	132
2	304	12	22	455	362
ę	138	63	23	1440	305

(continued)					
485	2050	48	57	1520	10
340	2900	47	127	608	10
437	1870	45	213	413	10
293	2680	42	154	413	10
445	1705	41	134	575	6
391	2505	40	65	1140	×
438	1720	40	58	455	٢
501	750	36	186	413	٢
299	2220	35	102	413	٢
421	1490	35	109	304	٢
270	2050	34	170	288	7
396	1430	34	144	288	٢
468	304	33	166	285	٢
257	1870	29	152	148	7
394	595	29	29	753	5
269	1720	28	58	304	5
312	1080	26	21	608	4
360	1070	26	32	148	4
195	1520	24	16	455	æ

1203

continued
<u> </u>
Ξ
le
- <u>e</u> -
Ľ

Downloaded At: 11:03 25 January 2011

Dose		Graft	Dose		Graft
(rads)	Dose rate	(m/m %)	(rads)	Dose rate	(m/m %)
X 10 ⁻³	(rads/hr)	X 10	X 10 ⁻³	(rads/hr)	× 10
12	705	191	48	3060	295
12	750	152	49	2050	465
13	1870	95	60	2500	442
14	570	255	60	2500	454
14	575	231	60	2505	365
14	575	251			
15	610	64	68	2840	514
15	2220	110	70	2900	511
16	148	70	73	1520	705
17	705	219	73	3060	422
17	707	236	107	2220	845
17	1080	257	128	2670	833
18	1140	163	147	3060	942
18	2680	117			

prior to mixing. Sakurada [2] and co-workers used a similar technique. For the test-tube irradiations the dose rate was determined as above. For the experiments in the canisters, however, in order to allow for the increased absorption of the impinging radiation by the aluminum, dosimetry was carried out within the canister itself. The canisters were found to absorb 15% of the radiation and allowance was made for this in calculating the distances from the source at which they were placed for dose-rates equivalent to those received by the solutions in the test tubes.

After irradiation, the strips of paper were removed from their containers, extracted with benzene in a Soxhlet extractor for 70 to 75 hr, dried, humidified, and weighed. The increase in weight was calculated as a percentage of the weight of the original paper. Dilli and Garnett [11] have shown this to be sufficient for complete extraction of the homopolymer and remaining monomer.

RESULTS

The results of the tests run in the general experiment are reported in Table 1. The values given for graft % are the means of each set of three results from each test tube. The values for each concentration were analyzed statistically to obtain constants for the regression lines representing the relationship between dose and percentage graft for each monomer.

The analysis was made according to the method described by Brownlee [12] and based on standard procedures. The data were processed by an IBM 360 computer. The constants for the regression lines, correlation coefficients, and residual variance about the regression line are reported in Table 2. The results of the dose-rate effect study are given in Table 3 while Table 4 shows the comparison of tests with and without oxygen. The LET results are given in Table 5.

DISCUSSION

Statistical Analysis

It is clear from the results of the statistical analysis (Table 2 and Fig. 3) that the relationship between graft and total radiation dose is linear within the limits of the experiment. The data fit Eq. (1):

$$\Gamma = \mathrm{mcd} + \Gamma' \tag{1}$$

c% (% v/v) ^a	m × 10 ⁵	Γ′(%)	n ^a	ra
10	1.85	-1.4	46	0.781
20	2.48	-0.6	48	0.887
30	3.74	4.8	57	0.797
40	3.24	-1.6	65	0.940
60	1.09	8.2	72	0.920

Table 2. Results of Statistical Analysis of Data in Table 1 Calculated to Fit Eq. (1) ($\Gamma = mcd + \Gamma'$)

^ac represents the monomer % in solution, n the number of sets of results, and r the correlation coefficients. For comparison the value of r at the 0.001 level of significance lies between 0.380 (n = 70) and 0.456 (n = 45).

Fig. 3. Plot of graft % vs dose (rads). The constants given in Table 2 were used with Eq. (1) ($\Gamma = mcd + \Gamma'$).

Effect
ose-Rate
2.
<u>e</u>
Tab

1			(IN /SDET		
Monomer % (% v/v)	a X 10 ⁵	b X 10⁴	Γ"	Variance ratio	Level of significance (%)
10	2.91	6.25	1.9	82.6	0.1
20	2.96	1.99	0.9	3.1	10
20a	11.05	6.74	-55.0	24.7	0.1
30	4.78	3.77	9.5	6.3	2.5
6	3.91	3.63	8.6	51.5	0.1
60	1.26	0.68	10.7	8.6	0.5
				-	

^a Obtained under conditions of minimum LET effect and oxygen replacement with nitrogen.

Dose rate (rads/hr)	20% Monomer		30% Monomer	
	a	b	а	b
2000	21.4	44.7	55.7	63.3
1143	24.8	58.6	65.4	129.0
667	26.7	73.8	70.8	183.1

Table 4. Effect of Adsorbed Oxygen

[Comparison of irradiations done in test tubes with (a) adsorbed O_2 and (b) adsorbed N_2 on cellulose. Dose 48,000 rads]^a

^a The values in the columns headed a were calculated from data in Table 2, i.e., with adsorbed oxygen corresponding to partial pressure of oxygen in air. Those in columns headed b were determined after repeated outgassing and simple replacement of air with moist nitrogen.

where Γ represents the increase in weight per 100 g paper when irradiated to dose d with a ⁶⁰Co source while immersed in a solution containing methanol and styrene (c%). The values of the constants m and Γ' vary with conditions and are apparently the repository of such parameters as dose-rate effect, oxygen content of the system, LET effect, and general experimental error. Equation (1) is derived from the expression for the regression line and there is evidence that some of the effects contribute to both constants. Further, the effects appear to be interlinked but there is insufficient evidence to quantify this idea.

One implication of the linearity of the relationship of graft and dose is that the rate of diffusion of styrene to the surface of the cellulose must be greater than the rate of grafting and further, small changes in the concentration of monomer do not greatly effect the amount of graft. The highest graft recorded in this series was 240% which amounts to about 16% of the total styrene present. Most grafting results were less than half of this amount. The possibility exists that the grafting species is not limited exclusively to monomer (though this may be the main source of styrene) but includes dimers and higher groups and may even include solvent. The observed linearity of the graft with dose supports the work of Huang [13] with purified viscose where linear relationships up to 300% graft were obtained. Table 5. Linear Energy Transfer Effect

	-			
Dose rate	Total dose	Graft (%)		
(rads/hr)	(rads)	Test tube	Canister	
2040	48960		26.2	
2000	48000	44.7	23.4	
1870	44880		22.5	
1793	43090		20.5	
1155	48520		36.8	
1143	48000	58.6	33.2	
1082	45430		29.7	
1047	43990		26.2	
669	48140		46.8	
667	48000	73.8	46.2	
636	45780		38.1	
620	44670		32.7	

(Comparison of data from irradiations in aluminum canisters with irridations in test tubes. 20% monomer solution and nitrogen adsorption on cellulose in both cases).

Dose-rate Effect

Dilli and Garnett [14] have shown the existence of a dose-rate effect in the radiation-induced grafting of styrene to paper at dose rates of 10^4 to 10^6 rads/hr. When considered in terms of graft for a given dose at various dose rates from 10^5 to 10^6 rads/hr, the relationship appeared hyperbolic in form, with the graft decreasing with increased dose rate. Over the small range considered in the present experiments, i.e., 140 to 3100 rads/hr, the possibility that the grafting effect might be linear with dose rate was examined. The data in Table 1 were therefore tested by using a form of statistical analysis [12] for multiple correlation considering both independent variables, dose and dose rate, to have linear relationships with the amount of grafting. The results of this analysis are given in Table 3 where a, b, and Γ'' refer to Eq. (2). It will be observed that two new constants, a (for dose) and b (for dose rate), have been introduced in Eq. (2). This is because m in Eq. (1) depends upon both dose and dose rate, and these two variables should be separated if possible.

$$\Gamma = \operatorname{acd} - \operatorname{bcd}_{\mathbf{r}} + \Gamma'' \tag{2}$$

Here d and d_r refer to dose and dose rate, respectively, Γ and c are as for Eq. (1), and a, b, and Γ'' are constants. The variance ratio due to the effects of dose and dose rate was highly significant in the case of 10, 40, and 60% solutions and of some doubt in 20 and 30% solutions. However, all data were in agreement with Dilli and Garnett's work in regard to the sign of the effect, i.e., a decrease in graft occurs with increased dose rate. Even in the doubtful cases (20 and 30% solutions) the effect is considered to be real (see below) but is masked by the magnitude of the experimental error.

The examples of grafting at very low oxygen contents (after nitrogen replacement of oxygen) reported in Table 4 confirm the existence of a doserate effect in the 20 and 30% solutions. The fact that this effect is extensive when the oxygen concentration is low illustrates the dependence of dose rate on the oxygen content of the system. This result is in contrast to the work of Dilli and Garnett who found that oxygen had little effect at higher (70 to 140 krads/hr) dose rates.

Concentration Effect

Equations (1) and (2) demonstrate the dependence of graft on both radiation dose and concentration. The nature of the constants m and a is not so clear since the numerical values of these constants depend on a number of effects. In general terms the constants represent the slopes of the lines connecting graft and dose (Fig. 3) and vary in an interesting way. Plotted as in Fig. 4, the values of a are represented as falling on one or other of two curves of similar characteristics but of opposite sense, one representing the increasing concentration of monomer and the other the increasing concentration of solvent. The interaction of these curves represents the concentration that should give the greatest response in terms of graft for a given dose.

Since m in Eq. (1) is a function of both dose and dose rate, separate constants a and b have been used in Eq. (2) in connection with dose and dose rate, respectively. Thus plotting a vs concentration gives a value for the maximum sensitivity of the solution to grafting uninfluenced by the dose-rate effect as would be the case if m were plotted. The fact that a peak is obtained suggests that the system may exhibit a Trommsdorff effect [15]. It is worth noting that the peak occurs at a molar ratio

Fig. 4. Plot of slope of line representing graft % dose corrected for dose rate effect. The constant a of Table 3 is plotted against solvent concentration. Volume % (°) and (X) mole fraction of styrene.

(2:1) of styrene (S) to methanol (M). The system might then be considered as a solution of the complex S_2M in either styrene or methanol. The possibility that this complex is itself grafted might be studied more fully. The significance of the plateau in Fig. 4, between 10 and 20% styrene, has yet to be explained.

The advantages of correcting the graft percentage for the effects of dose rate and using a standard dose rate are obvious for the comparison of results between different groups. It is suggested that zero dose rate be used, an idea analogous to the infinite dilution concept.

Oxygen Effect

This effect is well known and is associated with an induction period or delay in the onset of grafting. The usual method of avoiding the effect is to outgas the sample solution by repeated freeze-pump-thaw cycles; however, this process can possess difficulties [16]. In an attempt to overcome this problem the technique described above for replacement of O_2 with N_2 was used with the 20 and 30% solutions. Tests were run parallel with those done in aluminum canisters. The replacement of gas on the surface of the

cellulose would appear to have been accomplished easily, without seriously changing the quantity of water bound to the cellulose. The greatly increased grafting achieved compared with that obtained when limited oxygen was present (Table 4) amply illustrates the importance of removing oxygen from the surface of the cellulose and from the solution. The method is a simple alternative to the freeze-thaw procedure.

Linear Energy Transfer Effects

Evidence is now accumulating to show that the process of grafting in methanol depends on the formation and reaction of solvated electrons [17]. The electrons, arising from the interaction of γ photons with the atoms of container, paper, and solvent, will be solvated by the methanolic solution. The lifetime of these electrons is such that they can travel only relatively short distances before reaction. The ideal situation of measuring the graft caused by the electrons arising only from the atoms of the solution on the unfolded strip of paper has been almost achieved using the apparatus shown in Fig. 2. Here the paper is oriented perpendicular to the gamma irradiation from the source and over 10 mm from the inside surface of the canister. The supporting arms of the racks are the only foreign sources of electrons and these latter apparently are low in number. The 10 mm minimum distance for complete absorption of electrons is suggested by Trump and Van de Graaff [18]. Orientation of the paper parallel to the gamma radiation produced very little graft.

Table 5 gives the results for irradiations within canisters at the same dose rates as for the test-tube samples. The very considerable differences are considered to be largely due to LET effects.

The data obtained from these tests were also computerized to obtain a regression line relating the dose-rate effect to the graft % and dose. Despite the fact that the data were obtained from individual samples, each differing by only 2 to 5% in dose rate from its neighbor, a significant result was obtained for the existence and extent of the dose-rate effect. The constants for the regression line are reported in Table 3. The large value of the constant, however, suggests that extrapolation below 660 rads/hr. dose rate should lead to considerable error.

General Experimental Error

The manipulation errors involved in the experiments (e.g., weighing and measuring volumes) were small ($\sim 1\%$), yet the variation between triplicates within each test tube was at least 5% and repeated experiments at times

produced even larger errors. The larger errors are attributed to two main sources, LET effects and oxygen effects. The removal of these as in the experiments reported in Tables 4 and 5 resulted in a variation between samples which approached the level of the manipulation errors outlined above. The reliability of the data, when compared with the regression line, is between 2 and 5%, better than the usual dosimetry errors.

ACKNOWLEDGMENTS

The authors wish to express their thanks to Mr. B. O'Leary of A.A.E.C. for dosimetry and Mr. J. Beale of University of N.S.W. for assistance with programming and computer usage. The authors are also grateful to the Australian Institute of Nuclear Science and Engineering for financing the irradiations at Lucas Heights and to the Australian Research Grants Committee for continued support.

REFERENCES

- [1] H. A. Krassig and V. Stannett, Advan. Polym. Sci., 4, 111-156 (1963).
- [2] T. Okada, F. Kimura, A. Torikai, and I. Sakurada, *Nippon Hoshosen Kubunshi Kenkyu Kyokai Nempo*, 5, 39-46 (1963-64); C.A., 63, 7166b (1965).
- [3] I. Sakurada and N. Okada, Japanese Patent 3718 (1965); C.A., 63, 7190h (1965).
- [4] S. Hatakeyama, Japanese Patent 3719 (1965); C.A., 63, 7170d (1965).
- [5] K. Kawase, K. Hayakawa, and T. Matsuda, Nagoya Kogyo Gijutsi Shikensho Hokoku, 13(12), 448-452 (1964); C.A., 64, 11360c (1966).
- [6] S. Dasgupta, Can. Textile J., 81(13), 57-63 (1964); C.A., 66, 11731c (1967).
- [7] D. Gagnaire, O. R. Bernard, and M. Vindendon, Chim. Biochim. Lignine, Cellulose Hemicelluloses Actes, Symp. Intern. Grenoble France 1964, 359-367; C.A., 65, 5646f (1966).
- [8] R. Imamura and T. Taga, Sen-i Gakkaishi, 21(6), 303-311 (1965); C.A., 64, 3751a (1966).
- [9] A. G. Davies, Textile Inst. Ind., 4(1), 11-15 (1966); C.A., 64, 19855g (1966).
- [10] S. Dilli and J. L. Garnett, J. Polym. Sci., Part A-1, 4, 2323 (1966).
- [11] S. Dilli and J. L. Garnett, J. Appl. Polym. Sci., 11, 839-858 (1969); 11, 859-870 (1967).

- [12] K. A. Brownlee, Industrial Experimentation, 2nd ed., H.M.S.O., 1947, pp. 56-63 and 66-70.
- [13] R. Y. M. Huang, J. Appl. Polym. Sci., 10(2), 325-341 (1966).
- [14] S. Dilli and J. L. Garnett, Private communication.
- [15] E. Trommsdorff, H. Kohle, and P. Lagally, Makromol. Chem., 1, 169 (1948).
- [16] F. S. Dainton and G. J. Trout, Private communication.
- [17] T. Shida and W. H. Hamill, J. Amer. Chem. Soc., 88, 3689-3694 (1966).
- [18] J. G. Trump and R. J. Van de Graaff, J. Appl. Phys., 19, 599-604 (1948).